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I. Introduction

There are many data processing problems in which decisions must be

made, based on noisy data, which do not fit the well-known pattern of a binary

test between two hypotheses. Instead, there are N distinct hypotheses (N >2),

each of which may be composite (i. e., contain internal parameters), and an

a)gorithm is sought whereby each observation, or sample, implies a unique
9

choice of one of the hypotheses. We are not interested in randomized tests

or sequential tests, and the discussion is carried out in the simple context of

a finite - dimensional sample space with hypotheses expressed in terms of

well-behaved probability densities, each containing a finite number of real

parameters.

In this note, we suggest a simple algorithm for multiple-hypothesis

testing, based on the maximum-likelihood technique for deciding between

hypothesis pairs. The algorithm is not optimum in any sense, but has the

virtue that it works, while possessing considerable intuitive appeal. The

procedure arose out of the consideration of a particularly simple, but

practical, problem which requires a multiple-hypothesis formulation, namely

the detection of interference in a monopulse direction-finding system. This

problkm, which arises in Air Traffic Control surveillance, is discussed

here as an illustration of the testing algorithm.

2. Multipie-Hypothesis Testing

Let x represent a sample, i.e., a point in a multidimensional

observation space, from which a decision must be made among N hypotheses,

Hi (i = 1, ... , N), The decision rule must be a decomposition of the

observation space, X, into N disjoint sets, Di (i = I ... , N), so that a

sample falling into D. implies the choice of hypothesis i, while

N

U D. = X
i=l 1
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Hypothesis H. is characterized by a probability density,

fi (x I 01i),

which contains a finite set of parameters, a. . The ith parameter set, ai, is1

a point in a finite dimensional parameter space, A..1
If we had only to decide between hypotheses H. and H., we would follow1 3

the generalized maximum likelihood principle, maximizing each probability

density over its respective parameters and comparing their ratio to a thresh-

old. In other words, we would accept H. over H. whenever

Sup f' (x ai)

a• E A.
2. 1 >_ . (1)

Sup fi (x o

a. A..J 3

In terms of the log likelihood functions

Ii(x)= log Sup f.(x Iai) (2)
1 1 x

we write

T (i / j): I i x) I i lx)> logXij (3)

This expression is to be read: "testing Hi over H., accept Hi whenever the

indicated inequality is true". If we set the threshold, Xij, equal to unity, we

have log Xij = 0, and the test amounts to selecting the "most likely expl.nation"

of the data. In general we do not use X.. = 1 because we anticipate the needij
to control the inevitable decision-making errors, often in an unsymmetrical

way between the two hypotheses. Expression (3) can be rewritten in a sugges-

tive way by introducing two threshold parameters, 14i and Wj, as follows:
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T (i/ j): I (N N i(4)

In words: "H. is accepted if Ii (x) exceeds its threshold, pi, by at least as

much as the amount by which I. (x) exceeds its threshold, Ai ." With just two

hypothesis, only the difference,

Ai "- j = logXij.

is relevant, but (4) can be generalized to the N - hypothesis case quite easily.

A threshold, p V is associated with each hypothesis and the "excess", A, (x) -

is computed; the hypothesis with the largest excess is. accepted. A precise

definition, in which ambiguities are resolved, is as follows.

For a given sample let

M (x) -Max I(X) )A• (5a)
jl

Then,

M(x) = Ak (x) - Mk (5b)

for at least one value of k. We assign x to the set Dks where k is the smallest

index for which (5b) is true.

This algorithm has N-1 free constants, say

j = 2,", N,

which can be chosen (in principle) to control N-1 decision errors. These errors
are expressed in terms of the probability of choosing Hi when H. is true with

IJ

a. C B., a subset of A..
1J J
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In this algorithm, H . is chosen only when every other H. is rejected1 J
according to a test of the type (3). It might be thought that a more general

algorithm could be developed by introducing N (N-i) / 2 constants, X. (i G> j),

and the corresponding number of regions, Rij, defined by

1i (x) -I . (x) > logXij G > j) . (6)

Then each point, x, is either in R.. or its complement, for each distinct pair,

(i, j). If x ( Rij, then Hi is "preferred" over Hi, and hence for each poinL, x,

all the pairwise "preferences" are established by the definitions (6). The diffi-

culty is that there is no guarantee that one hypothesis will be prefei.ed over all

others since the transitivity of the preference relation is not an automatic

consequence of (6). This is most easily seen for N = 3 and can be illustrated

in a two-dimensiov:ai sample space as shown in Figure 1.

A 
13

Fig. 1. Preference regions.

Each line in Figure 1 represents a boundary defining a region R and its

complement for one pair of the three hypotheses Hi, H2 and H The numbers

indicate the preferred hypothesis on either side of the line.
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Fig. 1. Preference regions.

Each line in Figure I represents a boundary defining a region Rij and its

complement for one pair of the three hypotheses H1 , HZ and H The numbers

indicate the )referred hypothesis on either side of the line.
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In each of the six regions, A, B, C, D, E and F the pairwise preferences

establish one of the 3! possible hierarchies of choice, each with a clear

"first choice". Thus, in region A, H1 is preferred to H3 and H3 is preferred

to HV. However, in region G, H1 is preferred to H2 , H2 is preferred to

H3 , and H 3 is preferred to HI, hence the preferences are inconsistent with no

clear choice. If, in Figure J, we interchange the numbers 2 and 3 on the H2 -

H 3 boundary, then G becomes a region of ýonsistent preferences while C and

F are not.

This situation will not happen in our algorithm since a clear choice is

always made. The boundary between D and D, is the surface defined by:

1 2 (x)-

while the D - D3 boundary is described by

12 (x) -N - 1 3 (x) 3

The intersection of these two boundaries is a subspace in which

II (x) - )A1  = 13 (x) - L3

which is contained in the D1 -D3 boundary. Thus regions like G in Figure 1

do not arise.

3. The Monopulse Data Editing Problem

For our purpose, an "amplitude-comparison monopulse system" can

be modeled as an antenna-receiver system in which rf s-Ignals art- derived from

each of two effective antennas having coincident phase centers. It does not

matter whether the two "antennas" are realized by a pair of horn-terminated

waveguides facing a single reflector, or by a pair o5 feed networKs connected

to the elements of an array, so long as the phase centers coincide and the

main-beam voltage gaiins are real (L.e. regligible phase shift across either

main beam). The two rf signals are amplified and demodulated to produce

two in-phase and two quadrature components of video, each containing addiciv"
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Gaussiannoise. These four noise processes are mutually independent with

identical spectra., In the problem at hand, the receiver has detected and

synchronized its own timing on the early portion (preamble) of an anticipated

incident signal. The waveform is simple binary pulse-amplitude-modulation

(PAM OOK). The four video waveforms are sampled once at each bit position,

and we are concerned with deciding among various hypotheses regarding

the crue state of affairs on the basis of one of these four-dimensional -amples.

A separate decision is made for each bit position in the waveform (A more

general problem, not treated here, concerns multiple-hypothesis testing

based on a sequence of samples as one decision.)

Let the in-phase and quadrature samples from antenna 1 be combined as

the real and imaginary parts of a complex observable, ZI, and let the corres-

ponding ccmponents from antenna 2 be combined to form Z2 The pair (Z , Z 2 )

represents our basic sample, and hypotheses will be formulated as probaoility

densities in these two complex variables. The sample (Zi, Z2) always contains

the receiver noise components (ni, n 2 ), which are independent, zero-mean,

complex Gaussian variables, satisfying

En2 = n n12=2 2 i = 1,2 (7)En. = 0Qand E In.i2 Z- i '7aZ (7

The nois#' variance, a a, is fixed by the receiver characteristics, and is con-

sidered known.

A signal, coming from a single direction (azimuth), in the main beam of

both antennas, will produce sample components, (A1 e, A2 e ), of the same

phase. The phase,Ob, is essentiallythe rf phase of the incident wave at the common

phase center of the antennas, and the signal amplitude, Ai, is the product of the

incident wave amplitude and the voltage gain of the i-th beam in the signal direction.

Signal direction is determined (1) from an estimate of A 1 ,/A 2 , but this aspect of

the processing is not of direct interest here. If there are two signals in the main

beam, arriving from different directions, then each will contribute sample

components of the form just discussed, but each signal has a different rf phase, and

the two signals have unequal amplitude ratios, so that the resultant sample com-

ponents must be modelled as 1 e A e 2), where A, and A are arbitrary
1e 2 2
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positive constants, and 1 and 62 are arbitrary angle variables. The second

signal is interpreted either as interference from another source, or as off-

azimuth multipath from the main signal. Obviously, the same model represents

the case of three or more main-beam signals.

A final possibi.ity is a combination of one or more signals arriving from

outside the main anteýnna beams, where the antenna gains are complex and vary

rapidly with angle. Such a combination, representing side and/or back lobe

interference has been modelled as Gaussian noise, characterized by sample

components (mi, M2 ) which are statistically identical to the receiver noise

components, except for their variance

E Im. I 2 ab i , 2 (8)

When this interference is present the total noise components of the sample are

still independent, zero-mean complex Gaussian variables, characterized by

relations like (7), with aa replaced by a 2 + % , considered known (this assump-

tion is discussed below).

With these models we cn distinguish six possible hypotheses, depending

upon the number of main-bearn signals and the presence or absence of side/back

lobe interference. The hypotheses are defined in the following table.

Number of main- Side / Back

beam signals Lobe Interference Hypothesis

0 NO 1

I NO 2
_2: NO 3

0 YES 4

I YES 5

>2 YES 6

Table I
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If no main-beam signals are judged to be present, it is assumed that the signal

information bit is a "zero". If one or more main-beam signals are found, this

information bit is assumed to be a "one". Interference is reported if it appears

to be present as side/back lobe interference, or if more than one main-lobe

signal appearts. The presence of interference of either kind is used to aid the

mes sage decoding algorithm, and also to inhibit direction-finding on the signal

(by means of the amplitude ratio) , since a spurious value would quite likely be

found. Thus, the outputof the decision algorithm is an estimated information

bit and an interference flag ("one" is present), according to Table II.

Information Interferer ..e

Hypothe sis Bit Flag

1 0 0

2 1 0

3 1 1

4 0 1

5 1 1

6 1 1

TableII

Note that hypotheses H 3 , H5 and H6 , although statistically distinct, all lead to

the same response. Moveover , it will turn out that H 3 and H. are indistin-

guishable frorn the data, and H6 will later be dropped. H 3 anc H5 must be tested

separately, even though the resulting decision regions, D., and D5 , are combined

to determine system response. The term "data editing", as used here, refers

to the detection of interference and the resulting use of the interference flag

in decoding and direction finding. These latter topics are not discussed here,

and we return to the specific formulation of the multiple-hypothesis testing

problem.
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According to our models, the probability densities for the six hypotheses

have the forms

i f 1 2L ( 2 zipZ)[ L. (Z Z2 1 IV.%
f (ZI i) = a exp i 2 i = 1,2,

* a

and (9)

f. (ZifZ 2 a) [ZT(+%)Jxp j . =4

where

L 2 (Zip = L ip Z2) = I 2 + Z1 (no parameters)

L2 1 (ZI, Z 2 jAIA2,O) = L52 (Z, Z 2) AIA2,O) = IZ, -Alei012 + +Z . Aeilh 2

2 5 2 2

L L(Z 1,Z2 1AI,A 2, l = L2 (Z Zt1AI,A2,A ) Izd) -A IZI -Ale ii+ z 1Z2 - A e

3 `1 d 6 2 2 - 2

Since the variable parameters in all cases are internal to the functions Li, the

required maxira of the probability densities involve the minima of the L.2 Since

Ll2 and L42 involve no parameters, there is no minimization to nerform, while
2 2

L 3 and L can be made equal to zero by the parameter choices

A.ei~i = Z. i = 1,21 1

9



The remaining expression is

2 2-ib -~b2 2
L 2 = L = 1Zl12 + 1 - 2AIRe (eZ) - 2A Re (ejib Z) + A + A2

2 5 1' 21Z 1 1 2 2 1 2

1z 11 z + ++ [A 2 R(e-ilz ]

-[Re (eiliZ 1)] 2 -[R e(e - Z)] 2

From
22

Cos j + Cos

we infer that

2R1"iz ' -iS 12

Re (e-i, z = I e i + •Re (e Z )

SIlz1 2 + - Re (eZ) Z2)

Thus

L 2 = =JI 12 + [ R (e iOZ 12 +r R e- id) 2]2
2 + {Z 2 I') + I -R A2

R Re [2(Z?- + 2
1 2'

This expression is clearly minimized by the choice

&^ 2 2 (1S arg(Z 1 + Z 2 ) 1)

so that

Re e- Zo + Z )+ Z2 + ZI

together with the choices

A =Re (e-"Z

A 4
A2 Re (e

10



The resulting minimum is

If L2 2n L I 2 .2
A• 1 12 + Z212) Z' + Z21

We introduce the notation

p _- 1'12 4 IZ 1

1z 2 + z 21
1(13

and summarize our results in the form of log likelihood ratios:

I .I(Zip Z) =-2 log ( a) -2 2cr

a

121ZII Z2) = -2 log (2vaor) l
2 2a 2

a

2a

2 3(ZI, Z2) = -2 log (2tcrz)
a)

(14)

1Zl' Z2) = -2 log [2v + O'1 + P

0a b

16 (Z 1 , Z) = -2 log [211T(a + t(

12 a

11
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4. The Decision Regions

According to equations (5) in Section 2, the testing algorithm involves the

differences 1i (x) - gip where the 1i are arbitrary constants to be assigned

later. Thus, the constant terms in equations (14) can be absorbed into the Ai.

In addition, the ii (x) can all be multiplied by a fixed constant without changing

the decision regions. We therefore ignore the log - terms in (14) and multiply

by the factor ( -2a ). The effect of the minus sign is to change from Max to Min
a

in equations (5), hence the decision regions are based on

M(Z 1 , Z 2 ) = Mm (z2IZZ) + (15)j = 1 jl19+V

where

g1 (Zip Z 2 ) = P

g2 (Z1I ZZ) = i•(P - Q)

g 3 (Zip Z 2 ) = 0

g4 (Z 1 , z 2 ) = 1 P

95 (Z 1 ' Z2 ) 72RL (P -Q)

g6 (Zip Z 2 ) 0

and 2 2
(T +0
-a 2 b >1 (17)

aa
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The g in (15) are new arbitrary constants. We can simplify things by assigning

those sample points for which

gi(Zip Z2 ) + Pi < gk(ZlV Zz) + TAk , k • i (18)

to region Di, and making an arbitrary assignment of points for which two or

more of the gi + ;iA are equal. These boundary points will not contribute to

any integrals expressing decision probabilities or errors, since the functions

gk are all continuous.

We note that the sign of A3 - A6 i6 independent of the data and hence one

of the tvo hypotheses, H3 or H 6 , is always preferred over the other, depending

on the choice of the pi. This simply means that the data cannot support a decision

between H3 and H 6 and H 6 is nowdroppedfrom our discussion with the understandirn
that H 3, as represented by g3 (Z 1 Z2 ) + ;3 , represents the composite case

of two or more main - beam signals, with or without side/back lobe interference.

The decision region for Hi is simply the intersection of the regions defined

by (18) for all values of k distinct from i. Since the gk (ZI ' Z2 ) depend only

on the quantities P and Q, these two statistics are sufficient for decision between

all five hypotheses. Moreover, the regions defined by (18), expressed in the

(P, Q) - plane, are all half - planes, bounded by various straight lines. The

defining conditions are a-s follows, in terms of the coordinates P and Q.

H is chosen if

P + Q < 2 (p 2 ? 1)

P < 3 ;A 3 1

(19a)R
P < R RI (u4 " 1 1) ' and

(ZR-1) P + Q< 2R( 5 -"A

13



H2 is chosen if

P + Q ;> 2 ('A 2

P - Q < 2 (A3 " M2 )

(R - 2) P - RQ < 2R (p 4 - A 2)# and (I9b)

p Q <2R

R 1- (M5  Ad)

H 3is chosen if

3 '1

P - 2 > 2( 3 " 2)

P > R (A3 /A4) ' and (19c)

P -Q > 2R('3 ;5)'

H4 is chosen if

R-> '-- (A4 " Mj)
P ~~R-i - 1 4~

(R - 2) p - RQ > 2R (iu4 - Ad2,

P < R (PL3 " M4 ) and (19d)

P + Q < 2R (M 5 - A4).

14



H5 is chosen if

(ZR-i) P + 2> ZR(p 5 -

Q ZRP~ ~ -Q-• I (IA 5 142)

P - Q < ZR ($A3 - bs5 ), and (19e)

p + QL2m (1 5 -")

Arbitrary assignments of boundary points have been made in equations (19)

which involve ten distinct straight lines, corresponding to the ten pairs of

hypotheses. P and Q are inherently positive, and P > Q, by the Pythagorean

inequalit:,, hence only that portion of the first quadrant in the (P, Q) - plane

between the P - axis and the line P = Q is attainable from the data. Unless

a boundary line crosses that portion, it can have no effect on any decision region.

When parallel lines enter into the definition of a decision region, only one will

be effective, depending on the relative values of the ;ii Thus, a considerable

variety of shapes is available for the regions Di, and error probabilities will

have to be formulated and assigned in order to choose among them.

Note that H2 is chosen over HlI (refer to Table I) if P + Q exceeds a constant.

This is the detection statistic obtained by Hofstetter and DeLong(l) in their

analysis of amplitude - comparison monopulse. Details may be found in that

paper concerning the estimation of signal direction from the parameter estimates

given in (11) and (12), once H2 has been accepted. We see also that HZ is chosen

over the signal - plus - interference hypotheses, H3 and H5# if P - Q is sufficiently

small. This test, which is related to a requirement that the monopulse beam out-

puts be in phase, has been obtained by McAulav(2) for H2 against H5 , and

DeLong(3) for H2 against H3. An approximation to the P-Q test has also been
(4)

obtained by McGarty

15



The boundary lines and the hypothesis pairs they separate are the following:

(HI, H2 ) P + Q = 2 (U 2 -A 1 ) (20a)

(H 4 , H5 ) P + Q = (R (A5 - /14) (20b)

(H 2, H3) P - Q = 2 (A3 -" 2 ) (20c)

(HZ H5 ) P Q Q = - (20d)

5) R - (1.45 j A 2)

(H 3 , H5 ) P - Q = 2R (/3 - ;5) (20e)

(His H3 ) P = A3 Ill (20f)

R
(Hi H4 ) P R ) (20g)

(H 3, H4 ) P = R (M.3 - j4) (20h)

(Hi, H5 ) (2R - 1) P + Q = 2R (M5  1) (20i)

(H 2 , H4 ) (R - 2) P - RQ = 2R (94 A d (Z0j)

In practice, R will be relatively large compared to unity, and in this case liae

(20i) is nearly parallel to lines (20f), (20g) and (20h). Also, line (20j) becormes

nearly parallel to lines (20c), (Z0d)and (20e). In this limit, our testing regions
2

become insensitive to the assumption that c0 b, the interference power, is known.

An interesting possibility would be to consider cia 2+ o to be another unknown

parameter in hypotheses 4 lnd 5. Returning to equation (14), we would find

that the estimates of this parameter are P/4 (on H4 ) and (P -Q)/4 (on H5 ), while

94 and g5 would be changed from the expressions given in (16) to

16



g4 (Zl, ZZ) = 4 2alog P
g45 (Z 1  a

it1 Z ) = 4Ta2log(P -Q)

The (P, Q) - plane still suffices to define the decision regions, but some of the

boundary lines would no longer be straight.

Returning to equations (20), we note that H., H 3 and H 5 are separated from

one another entirely by lines of the form P - Q = constant, while HI, H 3 and

H4 are separated among themselves by the value of P alone. The presence of

a single main - beam signal is detected by the value of P + Q, whether the back-

ground noise is receiver noise or random interference.

If two boundary lines intersect, and also have a hypothesis in common, such

as (20a) and (20d) which both involve H2 , then a third boundary line must also

pass through the intersection, in this case (20i), separating HI and H5 (this can

be verified by direct substitutioi.) This is an eAmple the phenomenon discussed

at the end of Section 2, and many other three - line intersections may be anticipated.

Only eight of the ten possible cases actually arise (corresponding to the ten possible

hypothesis triplets), however, because of the parallelism of many of our boundary

lines.

There are many possibilities for the actual shapes of our decision regions,

depending upon the choice of the pi. In order to give all the boundary lines a

chance to traverse the attainable sample space, the right sides of equations (20a)

through (20i) must all be positive, since the corresponding left sides have that

property. This results in the inequalities

43 >' 5 >' 2 > A , and

(22)

A5 > 'A4 >9'1

which establishes an ordering between all pairs except P 2 and A4' We must also

order the three sets of parallel lines. Thinking of R as large compared to unity,

we assume further that

17



R(A 5- 4 ) > 112 (23a)

R

R(p3 -p 5) > A3 " 9 2 > R--'-1" (A5 " 1 2 ), and (23b)

M3M 1  R
R(A3 'U 4) > '3 - •lu I R--T L ( 4 "A 1 )" (23c)

These conditions are not strictly necessary, but are eminently reasonable,

considering the relations (22).

In Figure 2 we give an illustration, consistent with inequalities (22) and

(23), showing all ten lines and all eight triple intersections. The letters label-

ling the lines refer to equations (20). In Figure 3 we show the resulting decision

regions, obtained by application of equations (19). There are, in effect, four

adjustable constants in the choice of the regions D.. With the assumptions of1
equations (23), they may be taken to be the (P, Q) - coordinates of the point

where D1, D2 and D4 meet, the distance from there to the point where D2, D4

and D5 meet, and the distance from this latter point to the point where D3 , D4and D 5 meet.

In order to choose these constants we must assign four error probabilities.

There is no guarantee that any set of four such probabilities can be attained,

but reasonable compromises can probably be found by f ria. and error. It should

be recalled that in our problem HI3 and H5 result in the same system response,

hence D3 and D5 should be united and thought of as a single decision region. One

possible choice of error probabilities, each of which should be "small", would be

E(2/l), E(3 + 5/1), E(3 + 5/4) and E(. + 5/2), where E(i + j/k) stands for the

probability of declaring Hi or H. to ba true when H kis actually valid. E(2/l) is

the simple false - alarm probability -) declaring an information "one" to be

present (but interference absent) when only receiver noise is contained in the data.

In the same true situation, E(3 + 5/1) is the probability of falsely declaring the

presence of interference along with an information "one". E(3 + 5/4), which

probably cannot be made as small as E(2/l), to which it is analogous, is the

probability of correctly recognizing the presence of side/back lobe interference,

but falsely declaring an information "one". A bound must be assigned to this
2error for a range of values of bor R. T'e last error, E(3 + 5/2), is the

18
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probability of correctly recognizing the presence of an information "one", but

falsely flagging the presence of interference, hence casting doubt on the decoding

and rejecting the measurement of signal direction. In general, this probability wil

will depend on the signal - to - noise ratio which exists under H2 , and E(3 + 5/2)

will be subjected to a bound over a range of signal - to - noise ratios. The nature

of these errors is summarized in Table III.

True Parameters Error Reported Parameters

Information Interference Type Information Interference

o 0 E(2/l) 1 0

0 0 E(3 + 5/1) 1 1

0 1 E(3 + 5/4) 1 1

1 0 E(3 + 5/2) 1 1

Table III

The error probabilities are not easily computed. On hypotheses H and
H4 the probability density in the (Z, Z2) sample space has the form

f (ZI, Z 2 ) = (2ra 2)-2 exp - (P/2a) , (24)

2 2 2 2
where, according to (9), a =% on H1 and i = aa + onH4. From (24)

it follows that the marginal probability density of the statistic P is

P 2--- = 4-4exp - (P/2 o) (25)

However the joint marginal of P and Q appears to be difficult to obtain, and the

regions of integration required are awkward to work with.
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In the remaining case, E(3 + 5/2), a useful approximate evaluation can

be made, as follows. We have

Z1 1 + n 1 , Z2 = + n2

and hence
iei 2 A~ezb n

P AIe b+ n11 + A2e + n12

(26)72 2 re -i2 1,-

A1 + A2 + 2Re [e (A n + A n.) + In, I' + In,12

and

IIA1 + n1)2 + (A2e + n2 ) 2  • (27)

In the expression for Q we write

-i?) 2 'i 2
Q (A1 + e n1) + (A2 + e n2.) I

2 2Ze -b 2-22

A + A2 + 2 e l(Ain + A2 n2 ) + e (n1 + n 2 )I

-(A2 + A 2) 11 + 74

where A n2 A n 2
Z = 2 e' 1 2 2 + e 1 2 2

A~2 -- +-A-2-A--.++ 2 2
A 1 +A 2  A 1 +A 2

We put

z =1+ iT

and expand:

i + z = + X + 2 +......
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to second order in Z I, assumed small compared to unity. This will be thecase for large signal - to - noise ratio, hence

A A + A 2 + 2 Re [e (An 1 + A2 n2

2)e n + n + A2  
A 2 ' Le (A n + An 2

AI + Az n 2 2 ).

Thus P and Q agree through first order, and we can writeP" O = le eitn112 + le'n 2 -291) 2 2) 2
2 - Re[e (n + n - X-Re ~A 1 +A 2  (2 8

x {m [e (AIn + A } 2A 2 A+..(

If we let
-it

e n U I + iv

-ite n2 =u 2 + iv2

then P-Q = 2 + v22 +u + 222 - u2 2 2 2
2  1 + 2I 

-u2 + v2

A2 (Av 1 + v 2 ) 2 +

1(A 2

2(v2 + v2) - z - A 2 v2 )

A2  2
A1 + A2

(A v 2= A2 V1 )2

2 2Al + A2
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To this order, we put

P Q (29)

whe re
w 2 2 (A1v2 -A 2 v 1) (30)
A A 2

Since v 1 and v 2 are independent Gaussian variables with mean zero and variance
* 2

0a, ( is Gaussian, with mean zero, and variance

E 2 2 A2l2 2
E t2 = 2 2 E (Av 2 - Av = 2 UZa (31)

A + A2

Returning to E (3 + 5/2), we note that the union of regions D 3 and D5

is contained in the set
p.Q 2R (_ 5 - '

which lies below line d in Figure 1. Thus

F 1

E (3 + 5/2) < Prob •2 R (A (5 - A2)

= Prob •i >-R -2(32)

Pro (15- 2)j

which is a simple error function. It is a remarkable fact that this error

probability is insensitive to signal - to - noise ratio (provided the latter is

large).

If hypothesis 5 is true, and the signal power is large compared to the

total of receiver noise and interference power, then equations (29) through (31)
2 2 2

remain valid, with Wa replaced by oa + ab hence an error function just likea ai

(32) expressesthe approximate probability of declring H3 or H 5 when H5 is

true; that is the probability of correctly recognizing the presence of side/back

lobe interference along with a signal.

We have left some loose ends in this problem, but our intention was to

illustrate the general method of multiple - hypotheses testing, which appears

to have some practical utility.
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